Communications and Data Processing

UPN 310-20-08

Barbie Brown

Semi-Annual Review of the FY97 SOMO/MO&DSD Technology Development Program

April 15, 1997

Communications and Data Processing Objective and Significance

GSFC

Overall Objective

Dramatically reduce the cost of high rate earth and space science data acquisition and first level processing.

<u>Goals</u>	<u>Significance</u>			
#1: Demonstrate high performance (over 150Mbps) baseband CCSDS return link telemetry gateway (F/S, R/S, Packet Proc) which can be reproduced at less than \$25K cost. Develop card to plug directly into PC or standard (PCI based) workstation.	 Dramatically reduce the size and cost of acquiring and processig CCSDS telemetry for missions such as EOS, L7, SpaceStation, SMEX, MIDEX, New Millenium. Transfer technology to industry as it is developed. 			
#2: Design high performance (over 300Mbps BPSK, QPSK), low cost single chip parallel digital reciever ASIC. Incorporate onto board which includes high performance Viterbi decoding and bit sync functions.	 Low cost PC based CCSDS telemetry systems capable of recieving data at rates over 300Mbps are made possible for reproduction costs under \$25K. 			

Communications and Data Processing Products and Customers

GSFC

Development Phase

			257515pm5m1 ma55				
Product	Goal #	User/Customer	Concept Design Demo Transfer			Fransfer	Approach/Comments
VLSI Comm G/W	1	EOS SMEX, ESDIS,GN		•			Completed Phase 1, high commercial interest.
Parallel Integrated F/S Chip	1	EOS, SMEX, MIDEX , GN					Multi-satellite formats, Operation to 550Mbps. High commercial interest.
Service Processor ASIC	1	EOS, SMEX, MIDEX , GN					Highly programmable, 1million packets/sec. High commercial interest
PCI10FR Board	1	EOS, SMEX, MIDEX , GN				•	PCI based board,fwd and return link frame processing up to 15Mbps. Commercialization in process.
Return Link Proc Board	1	EOS, SMEX, MIDEX , GN					Full return link processing up to 150Mbps in PC/Workstation compatible board. Frame and packet level processing Prototype board received and working.
HR CMOS Digital Rovr ASIC	2	EOS, TDRSS, GN, SN					Single chip BPSK and QPSK receiver. Operation to 150Mbps per channel.
PCI Receiver Board	2	EOS, TDRSS, GN, SN	•				PCI Receiver Board, Operation to 300Mbps PC or Workstation

Communications and Data Processing Goal #1 FY97 Accomplishments

GSFC

Demonstrate high rate (150 Mbps) baseband CCSDS Return Link Communication Gateway System (Goal #1)

Communications and Data Processing Goal #1 FY97 Accomplishments (cont'd)

- Completed fabrication of Service Processor ASIC:
 - Single chip, 0.4 μ CMOS chip performs packet/frame processing and maintains full data quality and accounting information.
 - Highly programmable, handles all standard CCSDS AOS return link services including packet extraction and reassembly.
 - Will operate at nominal packet rates over 1 million packets/sec and data rates to 300 Mbps.
 - High commercial interest. Two companies interested in receiving prototypes.
 - Patent application in process, cost in quantity, \$350 per chip.
- Began technology transfer of PCI10FR board which incorporates PIFS and R/S Error Correction Chips:
 - Operating at return link rates up to 15Mbps. Also performs command uplink interface functions.
 - High commercial interest, multiple projects interested in utilizing board SMEX, TOMS, GN (Wallops), ESDIS (Regional Data Centers). Lockheed Martin interested in commercializing card.
 - Currently available for Technology Transfer.

Communications and Data Processing Goal #1 FY97 Accomplishments (cont'd)

GSFC

Parallel Digital Receiver Board Specifications

Input:

Up to 150Mbps differential serial ECL

Functions:

Frame Synchronization, Reed-Solomon Error Correction (225,256), CCSDS Service Processing (VCDU, Packet, VCA, Insert, Pass thru) High Rate DMA via PCI bus transfer Full Data Quality Accounting

Performance:

100Kpackets /sec(worst case) to 1Mpackets/sec (best case) 100K frames per second 64 virtual channels 2048 application id's

Return Link Processor Card Block Diagram

Development Status

- CDR was held in early November 1996.
- Completed fabrication in January 1997.
- Testing board in Gateway 2000 PC and Dec Alpha 2100A workstation
- Successfully tested PIFS, RSEC, and Service Processor chips at rates up to 180Mbps with 300,000 packets per second

RLPC Board

Communications and Data Processing Goal #2 FY97 Accomplishments

GSFC

Develop high rate Parallel Digital Receiver ASIC and PC compatible board (Goal #2)

Communications and Data Processing Goal #2 FY97 Accomplishments (cont'd)

GSFC

High Rate Digital Receiver Board Specifications

Input:

Down converted BPSK or QPSK signal at rates up to 1.4G sym/sec

Functions:

Parallel digital receiver, BPSK or QPSK demodulation, Viterbi rate 1/2, constraint length 7 decoding

Bit synchronization

Performance:

150Mbps per channel (I and Q)

Costs:

\$350 per chip

\$5k per board (reproduction cost)

Development Status

- · Defined initial architecture with JPL.
- Conducted PDR for FPGA implementation in March 1997.

High Rate Digital Receiver Board Block Diagram

Development Approach

- Phase I Prototype Digital Receiver architecture using FPGA implementation on 9U VME boards.
 Tune the architecture before moving to ASIC implementation. Target date June 97.
- Phase II submicron CMOS ASIC design, single channel BPSK or QPSK operation at rates up to 300Mbps. Target design complete Feb 98.
- Phase III advanced modulation, higher data rates (up to 600 Mbps).

Communications and Data Processing Goal #2 FY97 Accomplishments (cont'd)

Communications and Data Processing FY97 Scorecard

GSFC

Transfer PC10FR board which performs frame synchronization and R/S error correction to commercial industry (Goal #1).

Perform CDR and fabrication of Service Processor ASIC. Transfer prototypes to commercial industry (Goal #1).

- Test Service Processor ASIC and verify operation at rates up to 300Mbps and 250k packets/ sec (Goal #1).
- Integrate PIFS, RSEC and Service Processor ASIC on RLPC board. Fabricate the RLPC board (Goal #1).
- Test RLPC board and verify system operations in PC/Workstation at rates up to 150Mbps (Goal #1).
- Demonstrate high rate baseband CCSDS gateway system in PC and workstation, show operation at 150Mbps (Goal #1).
- ● Transfer RLPC board to commercial industry (Goal #1).
 - Collaboratively developed initial architecture for parallel digital receiver architecture which will be initially implemented in FPGA devices (Goal #2).
- ● Prototype High-rate CMOS Digital Receiver architecture in FPGA devices (Goal #2).

Communications and Data Processing FY98 Goals

- Complete design of High-rate Digital Receiver ASIC (Goal #2).
- Complete development of PC/workstation compatible High-rate Digital Receiver board (Goal #2).

Communications and Data Processing Schedule

Communications and Data Processing Issues

- Funding for building the High-rate CMOS Digital Receiver ASIC.
 - manpower for the design and simulation of the ASIC is covered.
 - currently there are no funds in budget for the fabrication of the chip.